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ABSTRACT
We derive new variance formulas for inference on a general class of estimands of causal average treatment
effects in a randomized control trial. We generalize the seminal work of Robins and show that when the
researcher’s objective is inference on sample average treatment effect of the treated (SATT), a consistent
variance estimator exists. Although this estimand is equal to the sample average treatment effect (SATE)
in expectation, potentially large differences in both accuracy and coverage can occur by the change of
estimand, even asymptotically. Inference on SATE, even using a conservative confidence interval, provides
incorrect coverage of SATT. We demonstrate the applicability of the new theoretical results using an empir-
ical application with hundreds of online experiments with an average sample size of approximately 100
million observations per experiment. An R package, estCI, that implements all the proposed estimation
procedures is available. Supplementary materials for this article are available online.
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1. Introduction

The Neyman variance estimator is the most commonly used
variance estimator in randomized experiments (Imbens and
Rubin 2015). Under the super-population model, it is a consis-
tent estimator for the variance of the difference-in-means, and
this probably accounts for its popularity. However, under Ney-
man’s finite population model, a consistent variance estimator
for the difference-in-means does not exist (Neyman 1923/1990),
and Neyman’s variance estimator is conservative. Sharper, albeit
still conservative, variance estimators exist (Aronow, Green, and
Lee 2014), but they are not often used.

This article develops new limiting distribution results for
inference on sample average treatment effects. To estimate the
sample average treatment effect (SATE), researchers use the lim-
iting distribution of the difference-in-means recentered around
SATE. We show that changing the estimand and recentering the
difference-in-means with respect to sample average treatment
effect for the treated (SATT) allows one to obtain a consistent
nonconservative variance estimator. The key result of the article
is the derivation of valid inference on SATT that generalizes
Robins (1988) seminal work.

Inference on SATT yields a prediction interval (PI) that has
correct coverage (of SATT) and can potentially be substantially
different in length, than a confidence interval (CI) for SATE. It
follows that inference on SATE has incorrect coverage and/or
is inefficient for the estimation of SATT.1 The heterogeneity in
the response of different units to the treatment is the driving
force behind the potential accuracy differences. The change of

CONTACT Jasjeet S. Sekhon sekhon@berkeley.edu Department of Statistics & Data Science and Department of Political Science, 24 Hillhouse Ave, New Haven,
CT 06511.
A previous version of this article was entitled “Efficient Estimation of Average Treatment Effects under Effect Heterogeneity.”
The R package, estCI, that implements the estimation methods described in the article is available at https:// github.com/ yotamshemtov/ estCI.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.
1This holds even though SATE and SATT are equal in expectation.
2The terms SATE, SATT, PATE, and PATT have been first used, to our knowledge, by Imbens (2004).

estimand makes the recentered difference-in-means sensitive to
differences in the variance of the treated and control units, and
not only to the mean impact of the treatment.

Our possibly surprising results do have an intuitive inter-
pretation. While in the case of the super-population model
the Population Average Treatment Effect (PATE) and the Pop-
ulation Average Treatment Effect of the Treated (PATT) are
equal.2 In the case of Neyman’s finite population model, the
two estimands differ and each recentering choice yields a differ-
ent variance expression for the recentered difference-in-means.
Accuracy differences between inference on SATT relative to
inference on SATE come from two channels. First, in the case
of SATT, one does not need to use conservative bounds for the
variance estimator as it is point-identified. Second, the change
of estimand from SATE to SATT changes the variance of the
recentered difference-in-means. We discuss and decompose the
conditions for accuracy gains from each one of these channels.
Robins (1988) studied this phenomenon for the special case of
binary outcomes. He emphasized that a CI for SATE does not
yield correct coverage of SATT. We extend his result in various
ways, including by providing results for nonbinary outcomes
and providing conditions under which a PI for SATT yields
gains in accuracy.

In general, PIs for SATT are not guaranteed to have correct
coverage of SATE. We provide analytical and simulation based
evidence for when a PI for SATT has approximately correct cov-
erage of SATE and when it does not. The key factor behind the
differences is the variance of the treatment effect distribution. As
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the impacts of the treatment are more heterogeneous, inference
on SATE differs from inference on SATT or sample average
treatment effect for the controls (SATC). An example of when
SATT can be the estimand of interest is an attributable treatment
effect model in which the treatment effect varies across units
(Rosenbaum 2001; Feng et al. 2014; Keele, Small, and Grieve
2017).

Our results also extend Rigdon and Hudgens (2015), who
showed that PIs for SATT can be combined to construct a CI
for SATE in the context of binary outcomes. We generalize their
result to the case of nonbinary outcomes. In addition, we show
that when using the difference-in-means test statistic, combin-
ing PIs for SATT and SATC yields the exact same conservative
CI for SATE as one would have gotten by using a bound for
the variance of the difference-in-means, which assumes that the
correlation between potential outcomes is one. More efficient
CIs can be constructed by directly using sharper bounds on the
unobserved correlation between potential outcomes (Aronow,
Green, and Lee 2014). Taken together, our results prove that as
long as the test statistic is the difference-in-means, combining
separate PIs for SATT and SATC, which have been derived in a
nonconservative procedure, does not allow one to construct a CI
for SATE that is more efficient than existing procedures that use
conservative variance estimators and directly conduct inference
on SATE.3

The remainder of this article is organized as follows. Section 2
describes the theoretical framework, definitions, and notation
that are used throughout the article. Section 3 describes the key
theoretical results of the article. Section 4 provides Monte Carlo
simulations from several data generating processes. Section 5
presents notes and remarks on the theoretical results and possi-
ble extensions. Section 6 discusses an empirical data application
that consists of hundreds of online experiments with millions of
observations. Section 7 concludes.

2. Setting, Definitions, and Notation

We follow Neyman’s finite population causal model. Let Yi be
the outcome of interest for unit i and consider a fixed finite
population of N ≥ 4 units and two dimensions, Y(0) and Y(1):

�N = {
(Y(0)1N , Y(1)1N), (Y(0)2N , Y(1)2N), . . . ,

(Y(0)NN , Y(1)NN)
}

. (1)

A random sample of m units are assigned to the treatment
regime: �1

N = {Y(1)1N , Y(1)2N , . . . , Y(1)NN} and the vector of
treatment indicators, T = (T1, . . . , TN), denotes the m units
allocated to the treatment group.4 The remaining N − m units
are assigned to the control group and they form a random
sample of N − m units from the finite population: �0

N =

3A related literature discusses the idea of an optimal estimand in terms of
covariate balance in observational studies (Crump et al. 2009; Li, Morgan,
and Zaslavsky 2018). Crump et al. (2009) suggested a procedure for choos-
ing the optimal estimand in observational studies where there is limited
overlap in the covariates. The population overlap issue does not arise in
randomized experiments.

4For a review of the classic CLT results under the finite population model, see
Li and Ding (2016). Note that, the randomization model implies that the
number of treated units, m, is a fixed number and not a random variable.
The only random component in the model is the treatment indicators, T.

{Y(0)1N , Y(0)2N , . . . , Y(0)NN}, which is represented by the vec-
tor of indicators, (1 − T1, . . . , 1 − TN). Thus, the probability of
each unit being assigned to the treatment regime is p = m

N .
Finally, we also assume that SUTVA (Holland 1986) is satisfied:
Yi(T) = Yi(Ti).

Let τi denote the effect of the treatment on unit i (i.e., Yi(1)−
Yi(0)) and let the vector of treatment effects be denoted by τ =
Y(1) − Y(0). The researcher can be interested in conducting
inference on several possible average treatment effect estimands:

SATE ≡ 1
N

·
N∑

i=1
τi, SATT ≡ 1

m
·

N∑
i=1

τi · Ti,

SATC ≡ 1
N − m

·
N∑

i=1
τi · (1 − Ti). (2)

We do not impose any parametric assumptions on the rela-
tionship between Y(1) and Y(0), and allow τ to vary across
units. It is important to note that unlike SATE, both SATT and
SATC are random variables, even conditional on the sample, as
they are a function of T. Since SATT is a random variable, a
random interval that contains SATT with a probability of 1−α is
usually referred to as a PI or, in Bayesian terminology, a credible
interval, rather than a CI. We are not the first ones to discuss
inference on a causal estimand that is a random variable (Robins
1988; Bowers and Hansen 2009; Crump et al. 2009; Li, Morgan,
and Zaslavsky 2018).

3. Theory

3.1. Inference on SATT (and SATC) Relative to SATE

The classic estimator for SATE (and SATT) is the difference-in-
means between the outcomes of units under the two treatment
regimes. For notational convenience, denote the difference-in-
means estimator by tdiff:

tdiff ≡ 1
m

N∑
i=1

Yi · Ti − 1
N − m

N∑
i=1

Yi · (1 − Ti). (3)

Lemma 3.1 shows that the difference-in-means can be
decomposed to three terms of which only two depends on τ .
In Equation (4), the first expression is a function of Yi(0) and Ti
and is a random variable, the second is a function of Yi(0) and
is not a random quantity, and the third is SATT. Lemma 3.1
motivates the use of tdiff for estimating SATT or SATC by
symmetry. When recentering tdiff w.r.t. SATE the variance of
the recentered estimator does not change; however, recentering
w.r.t. SATT does change the variance calculations. This raises
the question of whether inference on SATT has correct coverage
of SATE and vice versa. Next we address this question both
analytically and using Monte Carlo simulations.

Lemma 3.1. The difference-in-means test statistic tdiff can be
decomposed into three expressions:

tdiff (Y , T) = N
m · (N − m)

·
N∑

i=1
Yi(0) · Ti − 1

N − m

·
N∑

i=1
Yi(0) + SATT. (4)

See Appendix A for the proof.
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The variance of tdiff − SATE contains the parameter ρ (see
Lemma 3.2), which cannot be observed and must be bounded
when conducting inference. Lemmas 3.1 and 3.2 illustrate how
by changing the estimand from SATE to SATT (or SATC),
still using the difference-in-means test statistic, it is possible to
conduct inference without needing to either know or bound ρ.

Lemma 3.2. The variance of the difference-in-means when
recentered w.r.t. SATE or SATT is

var (tdiff − SATE) = 1
N · (1 − p) · p

· [
p2 · σ 2

0 + (1 − p)2 · σ 2
1

+ 2p(1 − p) · ρ · σ0 · σ1
]
,

var (tdiff − SATT) = 1
p · (1 − p) · N

· σ 2
0 ,

where ρ ≡ cov(Y(1),Y(0))
σ0·σ1

is the correlation between the potential
outcomes under the treatment and control regimes, and σ 2

j (j ∈
{0, 1}) is defined as σ 2

j =
∑N

i=1(Y(j)i−Ȳ(j))2

N−1 . See Appendix A for
the proof.

The tdiff − SATT can be more accurately estimated relative
to the tdiff − SATE when σ1

σ0
> 1, ρ is sufficiently high, and p is

not too high (e.g., p = 1/2). Theorem 3.1 shows that regardless
of the value of σ1

σ0
there is a threshold level of ρ that below

it var (tdiff − SATE) ≤ var (tdiff − SATT) and above which
var (tdiff − SATE) > var (tdiff − SATT). Notice that according
to Theorem 3.1, it is simple to empirically test whether ρ̄ is
negative. One can conduct a one-sided hypothesis test of the null
hypothesis:

H0 :
σ1
σ0

≤
√

1 − p2

(1 − p)2

and if the null hypothesis is rejected, then we can infer that ρ̄ <

0.

Theorem 3.1. For all σ0 and σ1 such that σ0 < σ1:

1. There exists a threshold level of ρ, ρ̄ such that

ρ ≤ ρ̄ ⇒ var (tdiff − SATE) ≤ var (tdiff − SATT)

ρ > ρ̄ ⇒ var (tdiff − SATE) > var (tdiff − SATT)

2. When σ1
σ0

>

√
1−p2

(1−p)2 then, ρ̄ < 0.

See Appendix A for the proof.

In practice, the correlation between potential outcomes is not
observed and to estimate var (tdiff − SATE) it must be bounded.
The most commonly used estimator was proposed by Neyman,
and it ignores the correlation component all together. It can be
rewritten as

VNeyman = 1
m

σ 2
1 + 1

N − m
σ 2

0

= 1
N · p · (1 − p)

(
σ 2

1 (1 − p) + σ 2
0 p

)
. (5)

This variance estimator is consistent under the super-population
sampling model, and it can be used to conduct inference

on the population average treatment effect (PATE).5 A less
conservative estimator for the variance of the difference-in-
means bounds ρ at 1:

Vρ=1 = 1
m

σ 2
1 + 1

N − m
σ 2

0 − (σ1 − σ0)2

n

= 1
N · (1 − p) · p

(
p · σ0 + (1 − p) · σ1

)2 . (6)

Theorem 3.2 establishes that the limiting distribution of
tdiff − SATT, when standardized using the variance formulas
in Lemma 3.2, is standard Normal. An equivalent derivation of
the limiting distribution of SATC follows immediately using an
analog proof by symmetry.

Theorem 3.2. The difference-in-means recentered w.r.t. SATT
follows a standard Normal distribution under two regularity
conditions. When the following two conditions are satisfied:

N − m → ∞, m → ∞, and

max
1≤i≤N

(
Y(0)Ni − Ȳ(0)N

)2

∑N
i=1

(
Y(0)Ni − Ȳ(0)N

)2 · max
(

N − m
m

,
m

N − m

)
→ 0

then
tdiff − SATT√

var (tdiff − SATT)

d→ N(0, 1). (7)

See Appendix A for the proof.6

Therefore, a 1 − α PI for SATT is[
tdiff − z1−α/2 · σ̂0 · √

k(N, m), tdiff + z1−α/2 · σ̂0 · √
k(N, m)

]
,

(8)

where

k(N, m) = 1
p · (1 − p) · N

.

Rigdon and Hudgens (2015) showed how to derive a CI
for SATE by combining two PIs for SATT and SATC. They
focused on binary outcomes for which PIs have been derived
using past theoretical results (Robins 1988; Rosenbaum 2001).
Theorem 3.3 provides two key results. First, it is a generalization
of Theorem 1 in Rigdon and Hudgens (2015), and it shows how a
CI for SATE can be constructed in any randomized control trial
regardless of whether the outcomes are binary or continuous.
This part of the theorem follows directly from the derivations in
Rigdon and Hudgens (2015). Second, it shows that combining
PIs for SATT and SATC using a Bonferroni-type adjustment,
as was done by Rigdon and Hudgens, yields exactly the same
CI as when one constructs a CI for SATE directly and uses
a conservative variance estimator that bounds ρ at 1, Vρ=1.
Theorem 3.3 implies that combining PIs for SATT and SATC
yield a more conservative CI than using a CI based on a sharper
bound for ρ, such as that of Aronow, Green, and Lee (2014).

5The estimator in Equation (5) corresponds to Neyman’s second variance
estimator when the estimand is SATE (Neyman 1923/1990).

6These are not the weakest possible conditions.
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Theorem 3.3. Let [LSATT, USATT] and [LSATC, USATC] be PIs
for SATT and SATC according to the variance formulas in
Lemma 3.2; then a CI for SATE is[

p · LSATT + (1 − p) · LSATC, p · USATT + (1 − p) · USATC
]

and is equal to[
tdiff − z1−α/2 ·

√
V̂ρ=1, tdiff + z1−α/2 ·

√
V̂ρ=1

]
.

See Appendix A for the proof.

Lemma 3.3. When σ1 
= σ0, a PI for either SATT or SATC is
shorter than a CI for SATE that uses either VNeyman or Vρ=1.

See Appendix A for the proof. According to Lemma 3.3,
whenever σ0 < σ1 (σ0 > σ1), a PI for SATT (SATC) is shorter
than a CI for SATE using Neyman’s variance estimator. The gain
in terms of interval length (in %) is 1 − 1√(

σ2
1

σ2
0

(1−p)+p
) , and it is

decreasing with respect to p. For example, in a balanced design,
p = 1

2 , with a variance ratio of two, the length of a PI for SATT
will be 18.35% shorter relative to a CI for SATE that is based on
Neyman’s variance estimator.7

To obtain intuition about how recentering the difference-in-
means w.r.t. SATT can yields a different variance estimator, it
is useful to decompose the variance of the difference-in-means.
Equation (9) shows that when recentering w.r.t. SATT we cancel
two of the elements in the variance expression, var (SATT)

and cov
(

SATT, N
m(N−m)

· ∑N
i=1 Y(0)Ti

)
, and in doing so can

potentially reduce/increase the uncertainty.

var (tdiff − SATE) (9)

= var (SATT) + var

(
N

m(N − m)
·

N∑
i=1

Y(0)Ti

)

+ 2 · cov

(
SATT,

N
m(N − m)

·
N∑

i=1
Y(0)Ti

)

and the mean squared distance between the two estimands is

MSE(SATE, SATT) = 1 − p
m

· σ 2
τ . (10)

See Appendix A for the proof. Thus, the difference between
conducting inference on SATE or SATT increases with the
heterogeneity of the treatment effect. Given a fixed and bounded
value of σ 2

τ < ∞, those difference will converges to zero as
m → ∞.

7Note that Lemma 3.3 does not cover other estimators for the variance of
var

(
tdiff − SATE

)
, such as that of Aronow, Green, and Lee (2014). CIs based

on these other variance estimators may be shorter than our PIs even when
σ1 
= σ0. To address these variance estimators, we derive the accuracy
gains for a more general case in which ρ can be bounded by ρ∗, ρ ≤ ρ∗ .
As the variance of var

(
tdiff − SATE

)
is increasing w.r.t. ρ, it follows that sub-

stituting ρ∗ with ρ yields a conservative variance estimator that is smaller
than Neyman’s variance estimator. The idea of substituting a bound of ρ

instead of the true parameter value was proposed before in the literature
(Reichardt and Gallob 1999; Aronow, Green, and Lee 2014). The percentage
gain in terms of CI length is: 1 − 1√

p2+(1−p)2·
(

σ1
σ0

)2+2p(1−p)·ρ∗· σ1
σ0

.

4. Analytical Examples and Monte Carlo Simulations

4.1. Additive Random Coefficients Model

We consider a simple additive treatment effect model with het-
erogeneous impacts across units:

Yi(1) = τi + Yi(0), (11)

where τi is a random variable, which for simplicity is assumed
not to be correlated with Yi(0), nor to be correlated with Ti by
construction due to the randomization of treatment assignment.
The variance of the treated units is larger by σ 2

τ , and this gener-
ates a potential difference between a CI for SATE and a PI for
SATT. The variance ratio is: σ 2

τ

σ 2
0

+ 1 and it is increasing with
the heterogeneity of the treatment effect. Consider the data-
generating process in Equation (12) with a sample of n = 1000
units. We performed 1000 draws of samples and for each one
simulated 1000 different allocations of the treatment according
to p = 1/2.8

Yi(0) ∼ N(μ = 10, σ 2
0 = 1), τi ∼ N(μ = 0, σ 2

τ ),
Yi(1) = τi + Yi(1). (12)

Figure 1 reports the simulation results. The PIs for SATT are
substantially shorter than the CIs for the SATE; this holds
both when using Neyman’s variance estimator and when using
a variance estimator based on a sharp bound for ρ, such as
that of Aronow, Green, and Lee (2014). The comparison to
the CI based on the true ρ parameter shows that the accuracy
differences are mainly due to the change of estimand, rather
than a conservative variance estimator. This is contrary to the
binary outcome example that is discussed in Appendix C. The
simulation is supported by our theoretical results that a change
of estimand has larger accuracy impacts as the variance of the
treatment effect is higher. The left plot in Figure 1 shows that
coverage of the PI for SATT w.r.t. both SATT and SATE. As the
treatment effect becomes more heterogeneous the PI for SATT
provides worse coverage of SATE and, vice versa, a CI for SATE
provides worse coverage of SATT.

4.2. Censored Outcomes (Tobit Model)

Consider a finite population of size N:

�N = {
(Y(0)1N , Y(1)1N), (Y(0)2N , Y(1)2N), . . . ,

(Y(0)NN , Y(1)NN)
}

(13)

where Y(0) is a continuous outcome and Y(1) is

Y(1) =
{

Y(0) + τ , Y(0) ≥ 0
Y(0), Y(0) < 0 and τ > 0.

We used a sample size of 1000 units and performed 1000 draws
of samples and for each one simulated 1000 different allocations
of the treatment according to p = 1/2. For the Monte Carlo
simulations we used the following data-generating process:

Yi(0) ∼ N(μ = 0, σ 2
0 = 1). (14)

8In Appendix Figure C.2, we show that the simulation results are not sensitive
to our choice of using N = 1000 and would have been the same using
N = 100 or N = 1300. This holds for both this data-generating process and
the Tobit model that is discussed below.
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Figure 1. Additive and heterogeneous treatment effect (random coefficient) simulation results: Length and coverage differences. NOTES: The left plot shows the coverage
of a PI for SATT w.r.t. SATT and SATE. The coverage of SATT has correct size and there is no evidence of over rejection of the null hypothesis. On the other hand, the coverage
of SATE becomes worse as the variance of the treatment effect increases. The right plot illustrates the accuracy gains of using inference on SATT relative to SATE. The PI
for SATT is compared to CIs for SATE based on three different values of ρ. The circles represent the accuracy gains (in percentages) relative to Neyman’s variance estimator
which assumes that ρ = 0. The squares dots use a sharp bound for ρ that have been derived by Aronow, Green, and Lee (2014). And the triangles compare the length of a
PI for SATT to a CI for SATE when the true value of ρ is known to the researcher.
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Figure 2. Censored outcome (Tobit) simulation results: Length and coverage differences. NOTES: See the notes in Figure 1.

The above Tobit model (Tobin 1958) implies that the variance
of the potential outcomes under treatment is higher than the
variance of units under the control regime and the variance ratio
is increasing with respect to τ :

σ 2
1

σ 2
0

= 1 +
Pr(Y(0) > 0) · τ · [τ · (1 − Pr(Y(0) > 0)

+E [Y(0)|Y(0) > 0] − E [Y(0)]]
σ 2

0

The simulation results in Figure 2 show that similarly to the
random coefficient model the change of estimand is the main
cause of the differences in length/accuracy. Similarly to the
previous simulations, as σ 2

τ increases the differences between
estimands become more stark and inference for SATT (SATE)
has bad coverage w.r.t. SATE (SATT).

5. Comments

Several remarks on the previous results and possible extensions
are in order.

Remark 1. The previous results can be extended to include
covariate adjustment of pretreatment characteristics using the
procedure proposed by Rosenbaum (2002). Denote by Xi a
1 × p dimensional vector of the pretreatment characteristics
of unit i. The matrix X has dimensions n × p and each row i
contains the pretreatment characteristics of unit i. It is common
to adjust Yi for Xi for efficiency purposes. Define Yadjusted

i =
Yi − Xi(X′X)−1X′Y as the adjusted/residualized responses.
All the results for inference on Yi also apply for inference on
Yadjusted

i .
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Figure 3. Inference accuracy: A comparison of SATT to SATE across online experiments. NOTES: The left plot (a) presents the distribution of the difference-in-means test
statistic across the hundreds of online experiments. The right plot (b) describes the relationship between the variance ratio in the experiment and the gain in accuracy,
difference in PI length relative to CI length, from conducting inference on SATT relative to SATE.

Remark 2. The inference results for SATT can also be extended
to additional treatment assignment models that differ from
the classic complete randomization mechanism. For example,
Theorem E.1, in Appendix E, provides variance and limiting
distribution results for inference on SATT when the treatment
assignment is done by random independent Bernoulli trials.

Remark 3. The regularity conditions of the above theoretical
results will usually be satisfied in applied research, yet it is
important to understand when they will not. For example, imag-
ine a control regime in which all the individuals die (Yi(0) =
0 ∀i), while under the treatment regime units have a strictly
positive survival probability, E [Y(1)] = p1 and var (Y(1)) =
p1(1 − p1). As the variance of the control units is strictly lower
(zero) than that of the treated units, there are potential accuracy
gains from estimating SATT instead of SATE. In this scenario as
σ 2

0 = 0 the PI for SATT contains only one point, the difference-
in-means estimate, which is clearly wrong. The example above
does not stand in contradiction to Theorem 3.2, as in the above
case the regularity condition of the theorem is not satisfied:

max
1≤i≤N

(Y(0)Ni−Ȳ(0)N)
2

∑N
i=1(Y(0)Ni−Ȳ(0)N)

2 = 0
0 and 0

0 is not a well-defined expression.

Remark 4. The variance formulas in Lemma 3.2 can be extended
to a super-population model in which the sampling procedure
has two steps. First a sample of 1, . . . , N units is randomly drawn
from the population. Second, m units within the sample are
randomly allocated to the treatment regime and the remaining
N − m units to the control regime. Appendix B discusses how
to conduct inference on SATT and SATE in this setting. Lemma
B.1 provides variance formulas that extend Lemma 3.2 to the
super-population sampling model.

Remark 5. The variance and inference results for SATT can
be extended to linear combinations of SATT and SATC. In
Appendix D, we derive inference results for ωSATT + (1 −
ω)SATC when ω is chosen to minimize the variance of the
recentered difference-in-means, tdiff−(ωSATT + (1 − ω)SATC).

We denote the weighting of SATT and SATC that minimizes
MSE as Sample Average Treatment Effect Optimal (SATO).
Inference on SATO can be used, for example, to reject the sharp
null of no treatment effect and will be more efficient for this
purposes than conducting inference on SATE.

6. Real Data Application: Online Experiments

To better understand the trade-offs in conducting inference
on different average treatment effect estimands, we analyze a
sample of online field experiments that have been conducted
by a large internet firm as product improvement tests. Our
sample consists of 278 experiments with an average sample size
of approximately 100 million units per experiment. Many dif-
ferent outcome metrics are analyzed for various subgroups. The
average subgroup consists of 1.1 million observations, and there
are 826 unique outcome metrics across all of the experiments.
In total, twenty-five thousand different treatment effects are
estimated. The data analyzed were aggregated and de-identified.

The left plot of Figure 3(a) shows the distribution of the
difference-in-means across all of the online experiments. It is
clear that on average, across experiments, the treatment had a
zero effect. The distribution of difference-in-means is tightly
centered around zero. However, this does not imply that the
treatment had no effect. Treatment effect heterogeneity can
generate positive effects for some units and negative effects for
others that cancel each other on average. However, elaborate
tests and computations are difficult to carried out with millions
of observations. Next we compare inference on SATE and SATT
in this setting and to what degree do they differ.

The right plot of Figure 3(b) demonstrates that variance dif-
ferences across experiments exist. As the variance ratio σ 2

1 /σ 2
0

increases, the PI for SATT becomes shorter, and in some cases
there can be large variance gains from changing the estimand
to SATT. As the variance ratio departs from one there can be
substantial differences between conducting inference on SATT
relative to SATE. The differences in PI/CI length, and hence also
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in rejection rates, between inference on SATE and SATT are
evidence of treatment effect heterogeneity.

7. Discussion

Making inferences about SATT (or analogously on SATC) using
a CI for SATE relies on variance estimators that are not con-
sistent and are not guaranteed to have correct coverage or be
efficient. We derive efficient variance formulas for inference on
a new and general class of estimands derived from any mixing
between SATT and SATC. The variance formulas are used to
construct PIs that are non-parametrically guaranteed to have
correct coverage and to be nonconservative—unlike inference
on SATE. All inference procedures discussed in the article use
the difference-in-means as the test statistic, and therefore have
the same point estimates as existing methods. Note that all three
estimands, SATE, SATT, and SATC, are equal in expectation.
The key difference is in the variance calculations.

Taken together, the Monte Carlo simulations demonstrate
that: (i) the choice of estimand has a direct implication on
the accuracy of the inference that can be conducted; and (ii)
using variance formulas that have correct size for SATE will not
have correct coverage of other sample average treatment effect
estimands such as SATT. The application to online experiments
provides a real data empirical example that even in experi-
ments with millions of observations there can still be mean-
ingful differences between valid inference on SATT relative
to SATE.

The large potential differences in coverage (and efficiency)
emphasizes that researchers should think carefully about which
causal estimand they want to conduct inference on. If the answer
is SATE, then they should not use any of the results in this article;
however, if SATT (or SATC) is also of interest, then the variance
formulas and inference results presented in this article will be of
direct use.

Supplementary Materials

The supplemental material includes replication code, proofs, and additional
results that are mentioned in the text only briefly.
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